LHC/ALICE實(shí)驗(yàn)向前區(qū)重夸克冷核效應(yīng)的研究
發(fā)布時(shí)間:2020-12-24 17:27
自上世紀(jì)中期以來,隨著高能加速器和探測(cè)器的快速發(fā)展,大量的新粒子被發(fā)現(xiàn)。按照其相互作用特性,它們可以分為:強(qiáng)子,輕子和傳遞相互作用的媒介子。強(qiáng)子直接參與強(qiáng)相互作用,如:質(zhì)子,中子和π介子。輕子直接參與電磁和弱相互用,如:電子和μ子。隨著碰撞能量的升高,我們發(fā)現(xiàn),強(qiáng)子是具有內(nèi)部結(jié)構(gòu)的。根據(jù)標(biāo)準(zhǔn)模型,強(qiáng)子由夸克組成,它們攜帶色荷,夸克間的強(qiáng)相互作用是通過傳遞色荷完成的,其對(duì)應(yīng)的傳播子稱為膠子?淇撕湍z子又被統(tǒng)稱為部分子。部分子之間的強(qiáng)相互作用由量子色動(dòng)力學(xué)(QCD)來描述。與電磁相互作用(阿貝爾色相互作用)不同,強(qiáng)相互作用(非阿貝爾色相互作用)具有漸近自由的性質(zhì),也就是說,量子色動(dòng)力學(xué)耦合常數(shù)依賴于相互作用的能量交換:相互作用部分子處于低能或者遠(yuǎn)距離時(shí)表現(xiàn)出強(qiáng)耦合;高能或者近距離時(shí)則表現(xiàn)出弱耦合特性。強(qiáng)耦合狀態(tài)下,部分子被“囚禁”在強(qiáng)子內(nèi)部而不呈現(xiàn)出自由的狀態(tài),即:色禁閉。此時(shí),相關(guān)計(jì)算只能采用非微擾理論來進(jìn)行,例如格點(diǎn)QCD(LQCD)。弱耦合狀態(tài)下,部分子的熱動(dòng)能可能超過將其囚禁在強(qiáng)子中所需的束縛能,從而導(dǎo)致強(qiáng)子“融化”,退禁閉的自由部分子可能形成一種新的物質(zhì)形態(tài)——夸克膠子等離子體(...
【文章來源】:華中師范大學(xué)湖北省 211工程院校 教育部直屬院校
【文章頁數(shù)】:316 頁
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
Abstract
1 Introduction
1.1 Quantum ChromoDynamics and Quark Gluon Plasma
1.1.1 The Standard Model and QCD
1.1.2 Lattice QCD calculations
1.2 Studying the QGP with heavy-ion collisions
1.2.1 Spacc-time evolution of heavy-ion colliding system
1.2.2 Signatures of the QGP from SPS to LHC
1.2.3 Cold and Hot Nuclear Matter Effects
1.3 Heavy-Flavours as probes of the QGP
1.3.1 Heavy-Flavour production in heavy-ion collisions
1.3.2 Studying heavy-flavours from their decay muons
2 The ALICE Experiment
2.1 ALICE Setup
2.2 Global Detectors
2.3 Central Barrel Detectors
2.4 The Forward muon spectrometer
2.4.1 The absorbers
2.4.2 Dipole Magnet
2.4.3 Tracking Stations
2.4.4 Trigger Stations
2.5 Future Upgrade of the Muon Spectrometer
2.5.1 Muon Tracking Upgrade
2.5.2 Muon Trigger Upgrade
2.5.3 Muon Forward Tracker(MFT)
2.6 ALICE Offine Framework
3 Data samples, Muon Selection Criteria and Acceptance×Effi-ciency Correction
3.1 Data Samples
3.1.1 Event Selection
3.1.2 Pile-up Effect
3.1.3 Normalization of Muon Triggers to Minimum Bias
3.2 Muon Track Selection
3.2.1 Track Selection
3.2.2 Detailed study of the p×DCA cut
3.3 Event Activity Classification
3.3.1 The Strategies
3.3.2 Multiplicity in p-Pb collisions
3.3.3 Event Activity Dependence in p-Pb Muon Triggered Events
3.4 Acceptance×Efficiency Correction
3.4.1 Aspects of correction efficiency
3.4.2 Strategy and Results
3.4.3 Systematic Uncertainty on the Efficiency
4 Subtraction of the background contribution of muons from charged pion and kaon decays
4.1 Experience Gained from Previous Analyses
4.1.1 Muon Sources
4.1.2 Background Estimation Strategies
4.2 Background Estimation in multiplicity integrated p-Pb Collisions Based on a Data-Driven Method
4.2.1 Summary of the Strategy
4.2.2 Input Charged Hadron Distributions
4.2.3 Rapidity Extrapolation
4.2.4 Conversion at Muon Level and Systematic Uncertainty
4.2.5 Cross-Checks and Discussion
4.3 Background within Individual Event Activity Classes in p-Pb Collisions
4.3.1 Challenges and Solutions
4.3.2 Charged Hadron Spectra with Different Estimators
4.3.3 Event Activity Determination
4.3.4 Deviation between Data and Monte-Carlo
4.3.5 Rapidity Extrapolation
4.3.6 Estimated Background and Systematic Uncertainty
4.3.7 Discussion
5 The pp Reference
5.1 pQCD-based Energy Sealing Procedure
5.1.1 The Strategy
5.1.2 Uncertainty Determination in Model
5.1.3 Strategy Validation for the Rapidity Shift
5.1.4 Energy Scaling Factor
5.2 The pp Rcference Estimated at (?)=5.02 TeV
5.2.1 Results Based on the Measurement at (?)=7 TeV
5.2.2 Extrapolation to Higher Transverse Momentum
5.3 Discussion
5.3.1 Combination of the Results From Different Energies
T"> 5.3.2 Alternative Strategy for the Reference at High pT
6 Muons from Heavy-Flavour Hadron Decays in p-Pb Collisions at (?)=5.02 TeV
6.1 Summary of the Analysis Strategy
6.2 Summary of the Systematic Uncertainty
6.2.1 Sources of Systematic Uncertainty
6.2.2 Error Propagation
6.3 Production Cross Section
6.4 Nuclear Modification Factor
6.4.1 Measurements in Multiplicity Integrated Collisions
6.4.2 Event Activity Dependence
6.4.3 Discussion
6.5 Forward-To-Backward Ratio
6.5.1 Measurements in Multiplicity Integrated Collisions
6.5.2 Event Activity Dependence
Conclusions
Bibliography
Appendix
Publication List
Presentation List
Acknowledgements
附件
本文編號(hào):2936036
【文章來源】:華中師范大學(xué)湖北省 211工程院校 教育部直屬院校
【文章頁數(shù)】:316 頁
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
Abstract
1 Introduction
1.1 Quantum ChromoDynamics and Quark Gluon Plasma
1.1.1 The Standard Model and QCD
1.1.2 Lattice QCD calculations
1.2 Studying the QGP with heavy-ion collisions
1.2.1 Spacc-time evolution of heavy-ion colliding system
1.2.2 Signatures of the QGP from SPS to LHC
1.2.3 Cold and Hot Nuclear Matter Effects
1.3 Heavy-Flavours as probes of the QGP
1.3.1 Heavy-Flavour production in heavy-ion collisions
1.3.2 Studying heavy-flavours from their decay muons
2 The ALICE Experiment
2.1 ALICE Setup
2.2 Global Detectors
2.3 Central Barrel Detectors
2.4 The Forward muon spectrometer
2.4.1 The absorbers
2.4.2 Dipole Magnet
2.4.3 Tracking Stations
2.4.4 Trigger Stations
2.5 Future Upgrade of the Muon Spectrometer
2.5.1 Muon Tracking Upgrade
2.5.2 Muon Trigger Upgrade
2.5.3 Muon Forward Tracker(MFT)
2.6 ALICE Offine Framework
3 Data samples, Muon Selection Criteria and Acceptance×Effi-ciency Correction
3.1 Data Samples
3.1.1 Event Selection
3.1.2 Pile-up Effect
3.1.3 Normalization of Muon Triggers to Minimum Bias
3.2 Muon Track Selection
3.2.1 Track Selection
3.2.2 Detailed study of the p×DCA cut
3.3 Event Activity Classification
3.3.1 The Strategies
3.3.2 Multiplicity in p-Pb collisions
3.3.3 Event Activity Dependence in p-Pb Muon Triggered Events
3.4 Acceptance×Efficiency Correction
3.4.1 Aspects of correction efficiency
3.4.2 Strategy and Results
3.4.3 Systematic Uncertainty on the Efficiency
4 Subtraction of the background contribution of muons from charged pion and kaon decays
4.1 Experience Gained from Previous Analyses
4.1.1 Muon Sources
4.1.2 Background Estimation Strategies
4.2 Background Estimation in multiplicity integrated p-Pb Collisions Based on a Data-Driven Method
4.2.1 Summary of the Strategy
4.2.2 Input Charged Hadron Distributions
4.2.3 Rapidity Extrapolation
4.2.4 Conversion at Muon Level and Systematic Uncertainty
4.2.5 Cross-Checks and Discussion
4.3 Background within Individual Event Activity Classes in p-Pb Collisions
4.3.1 Challenges and Solutions
4.3.2 Charged Hadron Spectra with Different Estimators
4.3.3 Event Activity Determination
4.3.4 Deviation between Data and Monte-Carlo
4.3.5 Rapidity Extrapolation
4.3.6 Estimated Background and Systematic Uncertainty
4.3.7 Discussion
5 The pp Reference
5.1 pQCD-based Energy Sealing Procedure
5.1.1 The Strategy
5.1.2 Uncertainty Determination in Model
5.1.3 Strategy Validation for the Rapidity Shift
5.1.4 Energy Scaling Factor
5.2 The pp Rcference Estimated at (?)=5.02 TeV
5.2.1 Results Based on the Measurement at (?)=7 TeV
5.2.2 Extrapolation to Higher Transverse Momentum
5.3 Discussion
5.3.1 Combination of the Results From Different Energies
T"> 5.3.2 Alternative Strategy for the Reference at High pT
6.1 Summary of the Analysis Strategy
6.2 Summary of the Systematic Uncertainty
6.2.1 Sources of Systematic Uncertainty
6.2.2 Error Propagation
6.3 Production Cross Section
6.4 Nuclear Modification Factor
6.4.1 Measurements in Multiplicity Integrated Collisions
6.4.2 Event Activity Dependence
6.4.3 Discussion
6.5 Forward-To-Backward Ratio
6.5.1 Measurements in Multiplicity Integrated Collisions
6.5.2 Event Activity Dependence
Conclusions
Bibliography
Appendix
Publication List
Presentation List
Acknowledgements
附件
本文編號(hào):2936036
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/jckxbs/2936036.html
最近更新
教材專著