祁連山青海云杉林群落結(jié)構(gòu)特性及養(yǎng)分特征研究
本文選題:青海云杉林 + 動(dòng)態(tài)觀測(cè)大樣地; 參考:《甘肅農(nóng)業(yè)大學(xué)》2016年博士論文
【摘要】:祁連山區(qū)氣候呈大陸性高寒半干旱、半濕潤(rùn)特點(diǎn),分布在其陰坡、半陰坡的森林植被除了受惡劣的氣候影響外,還受地形、土壤、干擾和生物學(xué)特性的綜合影響,森林生態(tài)系統(tǒng)環(huán)境較為脆弱,生態(tài)系統(tǒng)的穩(wěn)定性和抗干擾性差。加上人類(lèi)活動(dòng)的長(zhǎng)期干擾,該區(qū)森林生態(tài)系統(tǒng)退化嚴(yán)重,服務(wù)功能降低,逆向演化顯著,進(jìn)程加快,給區(qū)域生態(tài)環(huán)境建設(shè)和經(jīng)濟(jì)發(fā)展帶來(lái)了負(fù)面影響。通過(guò)對(duì)祁連山森林結(jié)構(gòu)特性和養(yǎng)分特征進(jìn)行研究,有助于了解恢復(fù)和重建受損的森林生態(tài)系統(tǒng),對(duì)森林植被恢復(fù)的合理調(diào)控具有一定的科學(xué)意義,從而更好的發(fā)揮其在生態(tài)服務(wù)功能中的作用。本文以分布在祁連山大野口流域的青海云杉林群落為研究對(duì)象,以森林生態(tài)學(xué)、土壤學(xué)、化學(xué)計(jì)量學(xué)等學(xué)科理論為指導(dǎo),通過(guò)對(duì)祁連山森林生態(tài)站建立的祁連山青海云杉林動(dòng)態(tài)觀測(cè)大樣地和設(shè)在不同海拔梯度固定樣地的植被調(diào)查,葉片和枯落物及土壤養(yǎng)分的室內(nèi)測(cè)定,應(yīng)用經(jīng)典數(shù)理統(tǒng)計(jì)分析方法,研究揭示了青海云杉林林分結(jié)構(gòu)特點(diǎn)、群落結(jié)構(gòu)的空間異質(zhì)性、土壤養(yǎng)分的空間異質(zhì)性和變化規(guī)律、土壤有機(jī)碳與養(yǎng)分之間的關(guān)系,進(jìn)而分析了青海云杉林生態(tài)系統(tǒng)內(nèi)碳、氮、磷在葉片—枯落物—土壤間的相互作用規(guī)律與機(jī)制。主要結(jié)論如下:(1)祁連山青海云杉林動(dòng)態(tài)觀測(cè)大樣地高等植物共有30科63屬88種,主要以菊科、薔薇科、唇形科、龍膽科、玄參科、豆科、毛茛科等為主。森林垂直結(jié)構(gòu)明顯,分喬木層、灌木層、草本層和苔蘚層。青海云杉林徑級(jí)結(jié)構(gòu)呈倒“J”型,無(wú)明顯斷層現(xiàn)象,林木更新良好。小樹(shù)空間分布格局表現(xiàn)為明顯的聚集分布,中樹(shù)空間分布呈輕微的聚集分布,而大樹(shù)分布表現(xiàn)為明顯的隨機(jī)分布,同時(shí)不同徑級(jí)的青海云杉林個(gè)體之間具有空間分布互補(bǔ)性。(2)祁連山青海云杉林動(dòng)態(tài)觀測(cè)大樣地青海云杉林5個(gè)結(jié)構(gòu)屬性的變異程度大小依次為密度平均冠幅顯著度蓋度平均樹(shù)高,變異系數(shù)為43.7%~79.6%。Moran′s系數(shù)表明各個(gè)結(jié)構(gòu)屬性均有不同程度的空間自相關(guān)性,自相關(guān)大小順序?yàn)槊芏绕骄鶚?shù)高蓋度平均冠幅顯著度,變化范圍為-0.047~0.382。指數(shù)理論變異函數(shù)模型能很好地?cái)M合不同結(jié)構(gòu)屬性的空間變異,變程為24.6~68.1 m,各屬性變量的結(jié)構(gòu)比除蓋度表現(xiàn)為中等空間相關(guān),其他指標(biāo)均為強(qiáng)烈空間相關(guān),各屬性指標(biāo)分維數(shù)接近2,空間依賴(lài)性較小。植被密度和蓋度空間分布呈帶狀結(jié)構(gòu)和斑塊結(jié)構(gòu)疊加的特點(diǎn),其他指標(biāo)呈較強(qiáng)的斑塊狀空間結(jié)構(gòu),密度和蓋度對(duì)平均冠幅、顯著度和平均樹(shù)高有一定的空間依賴(lài)性。青海云杉林群落結(jié)構(gòu)空間異質(zhì)性適宜的采樣間隔和采樣面積分別為10m和0.5hm2。(3)祁連山青海云杉林動(dòng)態(tài)觀測(cè)大樣地土壤ph、水解氮和全磷為弱變異性,有機(jī)碳、全氮、速效磷、全鉀和速效鉀為中等變異性,它們的大小依次為速效鉀有機(jī)碳速效磷全氮全鉀水解氮全磷ph。半方差最優(yōu)模型擬合分析表明,ph、全氮、水解氮、全磷、速效磷和速效鉀均符合球狀模型,有機(jī)碳和全鉀均符合指數(shù)模型;ph、有機(jī)碳、全氮、水解氮、全磷、速效磷、全鉀和速效鉀的變程依次為108.8m、88.5m、112.8m、131.9m、143.3m、73.3m、73.2m和134.7m。從空間結(jié)構(gòu)特征看,ph具有中等強(qiáng)度的空間自相關(guān),而養(yǎng)分表現(xiàn)出強(qiáng)烈的空間自相關(guān)。ph和養(yǎng)分均呈斑塊狀分布,有機(jī)碳和氮素具有相似的空間分布格局,全磷和速效鉀分布變化較為明顯,速效磷和全鉀分布變化較為平緩。上述研究結(jié)果可為祁連山青海云杉林土壤ph和養(yǎng)分的取樣設(shè)計(jì)和空間分布圖制作等提供參考。(4)祁連山青海云杉林動(dòng)態(tài)觀測(cè)大樣地不同土層有效微量元素鋅、錳、銅、鐵、硼的平均含量大小順序均為:鐵錳銅硼鋅,有效微量元素均具有明顯的“表聚效應(yīng)”。0~60cm土層有效鋅、錳、銅、鐵、硼均值大小分別為:0.52±0.27mg·kg-1、6.26±1.76mg·kg-1、2.44±0.98mg·kg-1、94.69±25.48mg·kg-1、2.19±0.70mg·kg-1。0~60cm土層中,鋅、錳、銅、鐵、硼密度大小分別為:2.21±1.27mg·m-2、26.24±7.64mg·m-2、11.50±6.41mg·m-2、447.78±178.04mg·m-2、9.76±3.32mg·m-2,有效性指數(shù)大小為:鐵硼銅錳鋅,其中:鐵、硼、銅有效性指數(shù)大于1,而鋅、錳有效性指數(shù)小于1。不同土層有機(jī)質(zhì)與鋅、錳、銅、鐵、硼等均呈顯著或極顯著正相關(guān),ph值與鋅、錳、銅、鐵、硼等均呈顯著或極顯著負(fù)相關(guān),速效磷僅與硼呈極顯著正相關(guān),有機(jī)質(zhì)和ph值均對(duì)有效微量元素含量具有重要影響。(5)祁連山青海云杉林動(dòng)態(tài)觀測(cè)大樣地隨土層深度不斷增加,土壤有機(jī)碳含量逐漸減小,到20~30cm以下趨于穩(wěn)定(p0.05);土壤ph值不斷增大,僅在0~10cm與10~20cm差異顯著(p0.05);土壤全氮、速效氮、全磷和陽(yáng)離子交換量不斷減小,全氮含量到30~40 cm以下趨于穩(wěn)定(p0.05),速效氮含量變化劇烈(p0.05),全磷含量差異性不顯著(p0.05),陽(yáng)離子交換量與有機(jī)碳含量變化規(guī)律相同;土壤速效磷、全鉀和速效鉀含量沒(méi)有明顯的變化規(guī)律,速效磷和全鉀含量差異性不顯著(p0.05),速效鉀含量?jī)H在0~10 cm與10~20 cm差異顯著(p0.05)。土壤有機(jī)碳與全氮、速效氮、全磷、速效磷、速效鉀和陽(yáng)離子交換量之間呈極顯著和顯著正相關(guān),與土壤pH值和全鉀含量之間呈極顯著和顯著負(fù)相關(guān)。土壤有機(jī)碳與其他基本化學(xué)性質(zhì)的回歸方程具有較高精度(R2=0.793),影響土壤有機(jī)碳含量主要化學(xué)因子依次為:土壤陽(yáng)離子交換量、速效鉀和全磷含量。(6)在不同海拔梯度上,青海云杉林葉片、枯落物和土壤C:N比的變化范圍分別為22.95~36.72、21.41~41.61、12.41~20.70,均值大小依次為枯落物葉片土壤,C:P和N:P比的變化范圍分別為510.2~739.8、398.6~698.1、134.1~219.7和18.13~26.86、6.71~26.28、7.96~16.56,均值大小依次均為葉片枯落物土壤。隨海拔梯度的增加,除土壤C:N比差異性不顯著外(p0.05),葉片和枯落物的碳、氮、磷化學(xué)計(jì)量比在不同海拔間的差異顯著性各不相同。葉片、枯落物和土壤C:N比兩兩均具有顯著正相關(guān)(p0.05),葉片與枯落物及土壤與枯落物C:P比均具有顯著負(fù)相關(guān)(p0.05),葉片與土壤C:P比及不同組分N:P比之間相關(guān)性均不顯著(p0.05)。該研究結(jié)果有助于進(jìn)一步了解青海云杉林碳、氮、磷在不同組分間的相互作用規(guī)律與機(jī)制。
[Abstract]:The climate of Qilian mountain area is characterized by semi-arid and semi-arid, semi humid and semi humid, which is distributed in its shady slope. In addition to the adverse climate, the forest vegetation in the semi shady slope is affected by the comprehensive effects of terrain, soil, interference and biological characteristics. The environment of the forest ecosystem is relatively fragile, the stability and anti-interference of the biological system are poor. Long term interference, the forest ecosystem in this area is degraded seriously, the service function is reduced, the reverse evolution is significant, the process is accelerated, and the ecological environment construction and economic development of the region have been negatively affected. Through the study of the characteristics of the forest structure and the nutrient characteristics of the Qilian Mountains, it is helpful to understand the restoration and reconstruction of damaged forest ecosystem, and to the forest. The rational control of vegetation restoration has certain scientific significance, thus better play its role in the ecological service function. In this paper, the Qinghai spruce forest community, distributed in the great wild river valley of Qilian Mountains, is the research object, guided by the theory of forest ecology, soil science and chemometrics, through the forest Ecological Station of Qilian Mountains. The dynamic observation of the vegetation of Qinghai spruce forest in Qilian Mountains, the vegetation survey, the indoor determination of leaves and litter and soil nutrients, and the application of classical mathematical statistics and analysis methods were used to reveal the structure characteristics of the spruce forest in Qinghai, the spatial heterogeneity of the colony structure and the spatial difference of soil nutrients. The relationship between soil organic carbon and nutrients, and then the interaction rules and mechanisms of carbon, nitrogen and phosphorus in leaf litter and soil in Qinghai spruce forest ecosystem. The main conclusions are as follows: (1) there are 88 species, 63 genera, 30 families, and 63 genera in 30 families of large plants of spruce forest in Qilian Mountains. Rosaceae, lip family, gentioparae, Radix scararopicaceae, leguminosaceae, Leguminosae, Ranunculaceae, etc., the vertical structure of the forest is obvious, divided into arbor layer, shrub layer, herbaceous layer and moss layer. The diameter class structure of Qinghai spruce forest is inverted "J" type, there is no obvious fault phenomenon, and the tree is well updated. The spatial distribution pattern of small trees is obvious and the spatial distribution of middle tree is distributed in the spatial distribution of the middle tree. The distribution of the trees in the Qinghai spruce forests of different sizes has the spatial distribution complementation. (2) the variation degree of the 5 structural attributes of the spruce forest in the Qilian Mountains Qinghai spruce forest is in accordance with the average canopy density average tree height of the density average crown. The coefficient of variation is 43.7%~79.6%.Moran 's, which indicates that all the structural attributes have different degrees of spatial autocorrelation, and the order of autocorrelation is the average height of the average canopy of the density average tree, and the variation range of the -0.047~0.382. exponent theory variation function model can well fit the spatial variation of the different structural attributes, and the variation range is 24.6. ~68.1 m, the structure of each attribute variable is relative to the average space, and the other indexes are strongly spatial correlation. The fractal dimension of each attribute is close to 2 and the spatial dependence is small. The spatial distribution of vegetation density and coverage is characterized by the superposition of strip structure and patch structure. The suitable sampling interval and area of spatial heterogeneity of Qinghai spruce forest community structure are 10m and 0.5hm2. (3) the dynamic observation of soil pH in Qilian Mountains Qinghai spruce forest in Qilian Mountains, and the weak variability of hydrolyzed nitrogen and total phosphorus, organic carbon, total nitrogen, available phosphorus and total potassium. And quick acting potassium is medium variation, and their size is the best fitting analysis of pH. semi variance model of total potassium hydrolysate nitrogen of quick acting potassium organic carbon. The results show that pH, total nitrogen, hydrolyzed nitrogen, total phosphorus, available P and available K all conform to the spherical model, and both organic carbon and total potassium are in conformity with the exponential model; pH, organic carbon, total nitrogen, hydrolyzed n, total phosphorus, The variation of available phosphorus, total potassium and available potassium is 108.8m, 88.5m, 112.8m, 131.9m, 143.3m, 73.3m, 73.2m and 134.7m. have medium spatial autocorrelation from the spatial structure characteristics, and the nutrients show strong spatial autocorrelation.Ph and nutrient patches like distribution, organic carbon and nitrogen have similar spatial distribution pattern, total phosphorus. The distribution of available potassium is more obvious, and the distribution of available phosphorus and total potassium is relatively gentle. The above results can provide reference for the sampling design and spatial distribution map of the soil pH and nutrients in Qinghai spruce forest. (4) the dynamic observation of the effective trace elements zinc, manganese, copper, iron and boron in the Qinghai spruce forest in Qilian Mountains. The order of the average content is: Fe, Mn, Cu, B and Zn, the effective trace elements have obvious "surface accumulation effect".0~60cm soil effective zinc, manganese, copper, iron and boron are respectively: 0.52 + 0.27mg. Kg-1,6.26 + 1.76mg. Kg-1,2.44 + 0.98mg. Kg-1,94.69 + 25.48mg. Kg-1,2.19 + 0.70mg. Kg-1.0~60cm soil layer, zinc, manganese, copper, iron, boric density The size is 2.21 + 1.27mg. M-2,26.24 + 7.64mg. M-2,11.50 + 6.41mg m-2447.78 + m-2,9.76 + 3.32mg. The effectiveness index is: Fe, B, Cu, Mn and Zn, of which iron, boron, copper are more than 1, while Zn, Mn efficiency index is less than 1. different soil organic matter and zinc, manganese, copper, iron, boron and so on are all significant or extremely significant Positive correlation, pH value has significant or extremely significant negative correlation with zinc, manganese, copper, iron, boron and so on. Available P only has a significant positive correlation with boron, organic matter and pH value have important influence on the content of effective trace elements. (5) the dynamic observation of Qinghai spruce forest in Qilian Mountains is increasing with the depth of soil layer, the soil organic carbon content gradually decreases, to 20~ The pH value below 30cm tends to be stable (P0.05), and the soil pH value is increasing, only in 0~10cm and 10~20cm (P0.05); the total nitrogen, available nitrogen, total phosphorus and cation exchange decrease, the total nitrogen content is stable (P0.05) below 30~40 cm (P0.05), the content of available nitrogen changes violently (P0.05), the total phosphorus content is not significant (P0.05), cation exchange quantity The content of soil available phosphorus, total potassium and available potassium did not change obviously. The difference of available phosphorus and total potassium content was not significant (P0.05). The content of available potassium was only significant difference between 0~10 cm and 10~20 cm (P0.05). Soil organic carbon and total nitrogen, available nitrogen, total phosphorus, available phosphorus, available potassium and cation exchange amount There was a significant and significant positive correlation between the soil pH and total K content. The regression equation of soil organic carbon and other basic chemical properties was of high accuracy (R2=0.793). The main chemical factors affecting soil organic carbon content were as follows: soil soil cation exchange, available potassium and total phosphorus content. (6) At different altitudes, the variation range of leaf, litter and soil C:N ratio of Qinghai spruce forest was 22.95~36.72,21.41~41.61,12.41~20.70, respectively, the mean size was the litter leaf soil, and the range of C:P and N:P ratio was 510.2~739.8398.6~698.1134.1~219.7 and 18.13~26.86,6.71~26.28,7.96~16.56, respectively. In addition to the elevation gradient, except for the C:N ratio of soil, the carbon, nitrogen and phosphorus ratio of leaves and litter are different at different altitudes. Leaves, litter and soil C:N have significant positive correlation (P0.05), leaves and litter, soil and litter, as well as soil C:N (P0.05). The C:P ratio has significant negative correlation (P0.05), and the correlation between the leaf and soil C:P ratio and the N:P ratio of different components is not significant (P0.05). The results of this study are helpful to further understand the interaction rules and mechanisms of carbon, nitrogen and phosphorus in Qinghai spruce forest.
【學(xué)位授予單位】:甘肅農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:S791.18
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 М.Н.Прокоnьев;翟汝康;;林冠下云杉更新?tīng)顩r[J];林業(yè)實(shí)用技術(shù);1964年19期
2 И.И古謝夫;С.В雅洛斯拉伏切夫;丁維安;;北極云杉目前的生長(zhǎng)[J];云南林業(yè)調(diào)查規(guī)劃;1988年04期
3 李文漪;;云杉花粉散播效率問(wèn)題[J];Journal of Integrative Plant Biology;1991年10期
4 蔣雪彬,李建民,高廷玉,徐桂生,佘紹強(qiáng);云杉的演化史及分布狀況[J];林業(yè)勘查設(shè)計(jì);2000年01期
5 何振榮,董天海;貴清禪林云杉王[J];甘肅林業(yè);2001年01期
6 閻順,孔昭宸,楊振京,張蕓,倪健;新疆表土中云杉花粉與植被的關(guān)系[J];生態(tài)學(xué)報(bào);2004年09期
7 劉艷鵬,朱玉勝,耿凱;寒溫帶云杉林的保護(hù)與利用[J];林業(yè)科技;2004年03期
8 馬明東;羅承德;張健;胡庭興;劉躍建;;云杉天然林分多因素?cái)?shù)量化生境質(zhì)量評(píng)價(jià)研究[J];中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào);2006年02期
9 徐鳳翔;;崗鄉(xiāng)——云杉的寶地[J];綠色中國(guó);2010年13期
10 譚留夷;趙志江;康東偉;康文;李俊清;;王朗自然保護(hù)區(qū)紫果云杉徑向生長(zhǎng)與氣候因子的關(guān)系[J];四川農(nóng)業(yè)大學(xué)學(xué)報(bào);2011年01期
相關(guān)會(huì)議論文 前7條
1 白星;黃高寶;;青海云杉林在祁連山植被景觀格局中的分布特征與機(jī)理研究[A];第五屆中國(guó)青年生態(tài)學(xué)工作者學(xué)術(shù)研討會(huì)論文集[C];2008年
2 蘇宏新;;氣候變化對(duì)天山云杉林影響的模擬研究[A];第五屆全國(guó)生物多樣性保護(hù)與持續(xù)利用研討會(huì)論文摘要集[C];2002年
3 包維楷;雷波;吳寧;龐學(xué)勇;;藏東原生云杉林下以及砍伐跡地的林間苔蘚群落結(jié)構(gòu)與生物量(英文)[A];2005青藏高原環(huán)境與變化研討會(huì)論文摘要匯編[C];2005年
4 劉慶;趙春章;林波;程新穎;尹華軍;陳勁松;周非飛;姜發(fā)艷;潘新麗;尹春英;;川西亞高山人工云杉林土壤碳庫(kù)及其對(duì)氣候變暖的響應(yīng)[A];2010中國(guó)科協(xié)年會(huì)第五分會(huì)場(chǎng)全球氣候變化與碳匯林業(yè)學(xué)術(shù)研討會(huì)優(yōu)秀論文集[C];2010年
5 劉慶;趙春章;林波;程新穎;尹華軍;陳勁松;周非飛;姜發(fā)艷;潘新麗;尹春英;;川西亞高山人工云杉林土壤碳庫(kù)及其對(duì)氣候變暖的響應(yīng)[A];經(jīng)濟(jì)發(fā)展方式轉(zhuǎn)變與自主創(chuàng)新——第十二屆中國(guó)科學(xué)技術(shù)協(xié)會(huì)年會(huì)(第一卷)[C];2010年
6 申雙和;孫照渤;陳鏡明;;北方黑云杉林冠內(nèi)空氣CO_2濃度及其通量模擬[A];新世紀(jì)氣象科技創(chuàng)新與大氣科學(xué)發(fā)展——中國(guó)氣象學(xué)會(huì)2003年年會(huì)“農(nóng)業(yè)氣象與生態(tài)環(huán)境”分會(huì)論文集[C];2003年
7 胡啟武;歐陽(yáng)華;;祁連山青海云杉林非結(jié)構(gòu)性碳研究[A];中國(guó)青藏高原研究會(huì)2006學(xué)術(shù)年會(huì)論文摘要匯編[C];2006年
相關(guān)重要報(bào)紙文章 前2條
1 何維生;云杉育苗管理技術(shù)[N];中國(guó)綠色時(shí)報(bào);2010年
2 陸陽(yáng);德國(guó)近自然森林經(jīng)營(yíng)考察見(jiàn)聞[N];中國(guó)綠色時(shí)報(bào);2005年
相關(guān)博士學(xué)位論文 前10條
1 彭守璋;祁連山區(qū)青海云杉林生長(zhǎng)過(guò)程及其固碳能力研究[D];蘭州大學(xué);2015年
2 趙維俊;祁連山青海云杉林群落結(jié)構(gòu)特性及養(yǎng)分特征研究[D];甘肅農(nóng)業(yè)大學(xué);2016年
3 李效雄;祁連山西水林區(qū)青海云杉林生態(tài)系統(tǒng)結(jié)構(gòu)與功能研究[D];甘肅農(nóng)業(yè)大學(xué);2013年
4 趙志江;川西亞高山岷江冷杉與紫果云杉對(duì)氣候的響應(yīng)[D];北京林業(yè)大學(xué);2013年
5 田風(fēng)霞;祁連山區(qū)青海云杉林生態(tài)水文過(guò)程研究[D];蘭州大學(xué);2011年
6 蘇宏新;全球氣候變化條件下新疆天山云杉林生長(zhǎng)的分析與模擬[D];中國(guó)科學(xué)院研究生院(植物研究所);2005年
7 夏博;云杉矮槲寄生對(duì)天然云杉林的影響及成災(zāi)因子[D];北京林業(yè)大學(xué);2012年
8 馬明東;云杉(Picea asperata)天然林可持續(xù)經(jīng)營(yíng)理論與技術(shù)[D];四川農(nóng)業(yè)大學(xué);2008年
9 羅建勛;云杉天然群體遺傳多樣性研究[D];中國(guó)林業(yè)科學(xué)研究院;2004年
10 趙浩彥;長(zhǎng)白山云冷杉林幼樹(shù)結(jié)構(gòu)和生長(zhǎng)動(dòng)態(tài)分析[D];北京林業(yè)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 龐歡;新疆天山云杉林土壤有機(jī)碳及組分特征研究[D];北京林業(yè)大學(xué);2015年
2 任璐;祁連山青海云杉林內(nèi)山地水文模型的構(gòu)建[D];北京林業(yè)大學(xué);2016年
3 吳旭東;青海云杉林對(duì)祁連山排露溝小流域徑流的影響[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2008年
4 張劍揮;祁連山青海云杉林生態(tài)系統(tǒng)水源涵養(yǎng)功能研究[D];甘肅農(nóng)業(yè)大學(xué);2010年
5 游秋華;川西北云杉人工林結(jié)構(gòu)與物種多樣性研究[D];西南大學(xué);2008年
6 王偉;川西亞高山云杉人工林層次去除對(duì)土壤微生物及酶活性的影響[D];四川農(nóng)業(yè)大學(xué);2010年
7 劉e,
本文編號(hào):1822403
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/nykjbs/1822403.html