水稻籽粒灌漿速率基因GFR1的圖位克隆及優(yōu)異等位變異在自然群體中的發(fā)掘
發(fā)布時(shí)間:2018-05-11 23:02
本文選題:水稻 + 籽粒灌漿速率; 參考:《南京農(nóng)業(yè)大學(xué)》2016年博士論文
【摘要】:水稻是重要的糧食作物,隨著耕地面積的減少和人口的增加,提高水稻產(chǎn)量成為解決糧食安全問(wèn)題的必由之路,而雜交水稻的發(fā)展為水稻單產(chǎn)的提高作出了重要的貢獻(xiàn)。但迄今為止,我國(guó)的雜交水稻種植中主要以雜交稻為主,其種植面積已達(dá)到秈稻種植面積的70%左右。相比之下,雜交粳稻種植面積只占到粳稻種植面積的5%左右,兩者巨大的差距給雜交粳稻的發(fā)展帶來(lái)很大空間。水稻籽粒灌漿充實(shí)度是影響粒重從而直接影響稻谷產(chǎn)量的重要性狀。大穗是F1代雜交水稻的主要優(yōu)勢(shì)之一,而大穗型雜交稻尤其是大穗型雜交粳稻常常表現(xiàn)為籽粒灌漿不足,充實(shí)度不好,不僅達(dá)不到已有穎花數(shù)應(yīng)當(dāng)達(dá)到的產(chǎn)量,而且使整精米率下降,不能充分實(shí)現(xiàn)大穗型品種的增產(chǎn)潛力和商品價(jià)值。因此,研究和探明控制水稻籽粒灌漿速率的遺傳基礎(chǔ)和作用機(jī)理,對(duì)于確定水稻高產(chǎn)優(yōu)質(zhì)高效育種策略具有重要意義。本研究圍繞上述科學(xué)問(wèn)題進(jìn)行了兩項(xiàng)研究,獲得的主要結(jié)果分述如下。1. 水稻籽粒灌漿速率基因GFR1的圖位克隆本實(shí)驗(yàn)室之前的研究利用兩個(gè)粳稻品種稽稻和C堡構(gòu)建的回交重組自交系群體(BC1F6)檢測(cè)到一個(gè)控制籽粒灌漿速率的主效QTL qGFR10(本研究命名為GFR1)。為了研究GFR1在籽粒灌漿中的遺傳效應(yīng),我們從構(gòu)建的染色體片段置換系中分離出一個(gè)以C堡為背景,含有z^稻等位基因GFR1的近等基因系(NIL-qqgf1)。與C堡相比,NIL-gfr1的灌漿速率在灌漿前期顯著高于C堡。兩者在抽穗期、單株有效穗數(shù)、穗長(zhǎng)、單穗總粒數(shù)和單穗實(shí)粒數(shù)上沒(méi)有顯著差異。NIL-gfr1在結(jié)實(shí)率、籽粒充實(shí)度、千粒重及小區(qū)產(chǎn)量上均顯著的高于C堡,這表明NIL-gfr1灌漿速率的提高有助于水稻產(chǎn)量的提高。我們利用NIL-gfr1和C堡構(gòu)建的次級(jí)F2群體進(jìn)行GFR1的精細(xì)定位。遺傳分析表明GFR1是一個(gè)單孟德?tīng)栆蜃。利用NIL-gfr1/C堡F2群體中灌漿速率快的1614個(gè)單株,我們將GFR1定位到10號(hào)染色體長(zhǎng)臂末端34Kb的區(qū)間內(nèi)。在此區(qū)間有4個(gè)預(yù)測(cè)的開放閱讀框(ORFs),通過(guò)測(cè)序?qū)Ρ劝l(fā)現(xiàn),ORF1(IOC_Os10g36400)的z^稻等位基因(GFR1-I)和C堡的等位基因(GFR1-c)的編碼序列中檢測(cè)到1個(gè)單核苷酸多態(tài)性(SNPs)位點(diǎn)和3個(gè)連續(xù)堿基的缺失。這些差異導(dǎo)致z^稻等位基因編碼的氨基酸序列中纈氨酸到丙氨酸的改變和一個(gè)丙氨酸的缺失。通過(guò)轉(zhuǎn)基因互補(bǔ)驗(yàn)證和轉(zhuǎn)基因過(guò)表達(dá)驗(yàn)證我們證明了 ORF1就是GFR1。我們利用C堡和NIL-gf1與兩個(gè)不同的粳稻不育系9522A和徐2A進(jìn)行了配組,來(lái)評(píng)價(jià)GFR1在雜交粳稻育種中的利用價(jià)值。結(jié)果發(fā)現(xiàn)近等基因系與不育系的配組在籽粒灌漿速率、充實(shí)度和小區(qū)產(chǎn)量上均高于對(duì)照C堡與不育系組合。因此,通過(guò)分子標(biāo)記輔助選擇,將稽稻等位基因?qū)霃V泛應(yīng)用的不育系中,可以改善雜交粳稻親本的籽粒灌漿速率從而提高雜交粳稻的產(chǎn)量。2.水稻籽粒灌漿速率優(yōu)異等位變異在自然群體中的發(fā)掘選用263個(gè)SSR標(biāo)記對(duì)由58個(gè)地方品種和37個(gè)推廣品種構(gòu)成的核心種質(zhì)群體進(jìn)行基因型鑒定,并于2011年和2012年調(diào)查該群體5個(gè)時(shí)期(開花后7天、14天、21天、28天和35天)的籽粒灌漿速率。在95個(gè)水稻核心種質(zhì)構(gòu)成的群體中,5個(gè)籽粒灌漿時(shí)期水稻籽粒灌漿速率的表型變異很大,變異系數(shù)變幅為36.49%到118.26%,廣義遺傳率為87.5%到96.8%。群體結(jié)構(gòu)分析表明,該核心種質(zhì)群體被劃分為7個(gè)亞群。連鎖不平衡分析顯示,地方品種和推廣品種LD衰減(D'0.5)所延伸的最小距離分別是84.8 cM和60.3 cM,這表明地方品種LD衰減速度較推廣品種慢。兩年共檢測(cè)到與5個(gè)灌漿期籽粒灌漿速率相關(guān)的標(biāo)記24個(gè),分布于水稻的1、2、3、4、5、6、8、9、11和12號(hào)染色體上。5個(gè)不同灌漿期檢測(cè)到的標(biāo)記分別為12、8、2、5和4,其中7個(gè)標(biāo)記(RM480,RM5818,RM525,RM6361,RM6314,RM224 和RM72)與兩個(gè)時(shí)期籽粒灌漿速率相關(guān)。其中,貢獻(xiàn)率最高的標(biāo)記位點(diǎn)是位于6號(hào)染色體的RM528,該標(biāo)記與籽粒灌漿速率的14DAF時(shí)期顯著關(guān)聯(lián),在2011年和2012年的貢獻(xiàn)率分別為25.87%和27.19%。預(yù)測(cè)了 15組優(yōu)異親本組合,其中最優(yōu)組合'南農(nóng)粳62401×老來(lái)紅'在整個(gè)灌漿期理論上可以使灌漿速率提高4.086 mg grain-1d-1。這些有利等位變異的載體品種可用作水稻籽粒灌漿速率遺傳改良的親本,通過(guò)聚合育種來(lái)提高水稻籽粒灌漿速率。
[Abstract]:Rice is an important grain crop. With the reduction of cultivated land and the increase of population, the increase of rice yield is the only way to solve the problem of grain security. The development of hybrid rice has made important contributions to the improvement of rice yield. The product has reached about 70% of the cultivated area of indica rice. In contrast, the area of hybrid japonica rice planting area is only about 5% of the area of Japonica rice. The huge gap between them has brought great space to the development of hybrid japonica rice. The grain filling enrichment of rice is an important trait that affects grain weight directly. The large spike is the F1 generation hybrid rice. One of the main advantages of large spike type hybrid rice, especially large panicle type japonica hybrid rice, is often characterized by insufficient grain filling and poor filling, not only can not reach the yield that the number of spikelets should be reached, but also reduces the whole precision of rice and can not fully realize the potential of increasing yield and commodity value of large spikelet type. The genetic basis and mechanism of grain filling rate of rice are of great significance for determining the breeding strategy of high yield and high quality and high efficiency in rice. Two studies have been carried out around the above scientific problems. The main results are divided into two studies before the study of the.1. rice grain filling rate gene GFR1. The main effect QTL qGFR10 controlling grain filling rate was detected by the backcross recombined inbred population (BC1F6) constructed by japonica rice varieties and C Fort (this study was named GFR1). In order to study the genetic effect of GFR1 in grain filling, we isolated a C fort from the constructed chromosome fragment replacement line and contained z^ rice equipotential group. The near isogenic line (NIL-qqgf1) of GFR1. Compared with C fort, the grain filling rate of NIL-gfr1 was significantly higher than that of C fort at the early stage of filling. There was no significant difference between the number of effective panicles per plant, the length of panicle, the number of single spike and the number of single spikes in the heading stage, which was significantly higher than that in the seed setting rate, the grain filling degree, the 1000 grain weight and the plot yield of C fort, which was significantly higher than that of the C fort. The improvement of the grain filling rate of the Ming NIL-gfr1 is helpful to the increase of rice yield. We use the secondary F2 group constructed by NIL-gfr1 and C to carry out the fine location of GFR1. Genetic analysis shows that GFR1 is a Dan Mendel factor. Using the 1614 single strains of fast filling rate in the NIL-gfr1/C Fort F2 population, we locate GFR1 to the end of the long arm of chromosome 10. In the interval of 34Kb, there are 4 predicted open reading frames (ORFs). By sequencing, we found that 1 single nucleotide polymorphisms (SNPs) sites and 3 continuous bases were detected in the encoding sequence of the z^ rice allele (GFR1-I) and C Fort (GFR1-c) in the encoding sequence of the z^ (GFR1-I) and C Fort (GFR1-c). These differences lead to the z^ rice allele. The change of valine to alanine in the encoded amino acid sequence and a deletion of alanine. We proved that ORF1 is GFR1. by transgenic complementary verification and transgene overexpression. We used C fort and NIL-gf1 to match two different japonica rice sterile lines 9522A and Xu 2A to evaluate GFR1 in hybrid japonica rice breeding. The results showed that the combination of the near isogenic line and the sterile line was higher than the control C fort and the sterile line in the grain filling rate, the filling degree and the plot yield. Therefore, the grain filling rate of the hybrid japonica rice parent could be improved by introducing the molecular marker assisted selection and introducing the rice allele into the widely used sterile lines. Increase the yield of hybrid japonica rice,.2. rice grain filling rate excellent allele variation in natural populations, selected 263 SSR markers to identify the core germplasm group composed of 58 local varieties and 37 generalizations, and investigated the population in 5 periods in 2011 and 2012 (7 days after flowering, 14 days, 21 days, 28 days and 35). The grain filling rate of 95 Rice Core Germplasms, the phenotypic variation of grain filling rate of rice at the 5 grain filling period was very large, the variation coefficient changed from 36.49% to 118.26%, and the generalized genetic rate of 87.5% to 96.8%. population structure analysis showed that the core germplasm population was divided into 7 subgroups. The minimum distance extended by LD attenuation (D'0.5) of local varieties and extended varieties was 84.8 cM and 60.3 cM respectively, which showed that the attenuation rate of LD in local varieties was slower than that of popularized varieties. In two years, 24 markers related to grain filling rate of 5 grain filling periods were detected, and they were distributed on the 1,2,3,4,5,6,8,9,11 and 12 chromosomes of rice by.5 different irrigation. The markers detected at the pulping period were 12,8,2,5 and 4, of which 7 markers (RM480, RM5818, RM525, RM6361, RM6314, RM224 and RM72) were related to the grain filling rate at two periods. Among them, the highest contribution rate was at the RM528 on chromosome 6, which was significantly associated with the 14DAF period of grain filling rate, in 2011 and 2012. The contribution rate was 25.87% and 27.19%. respectively. The best combination of 15 groups was predicted. The best combination of 'Nong Nong japonica 62401 x old red' could increase the grain filling rate by 4.086 mg grain-1d-1. in the whole grain filling period. To improve the grain filling rate of rice.
【學(xué)位授予單位】:南京農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:S511;Q943.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 莫家讓;;幾種藥劑處理水稻籽粒對(duì)萌發(fā)及早期生長(zhǎng)的影響[J];植物生理學(xué)通訊;1956年04期
2 殷宏章;余志新;李娉嫦;沈允鋼;;水稻籽粒成熟過(guò)程中淀粉合成及水解酶活力的變化[J];植物生理學(xué)通訊;1956年05期
3 殷宏章;余志新;李娉嫦;沈允鋼;;水稻籽粒成熟過(guò)程中淀粉合成及水解酶活力的變化[J];實(shí)驗(yàn)生物學(xué)報(bào);1956年01期
4 李豪U,
本文編號(hào):1875999
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/nykjbs/1875999.html
最近更新
教材專著