能量過(guò)濾磁控濺射技術(shù)過(guò)濾電極結(jié)構(gòu)對(duì)薄膜性能影響的研究
本文選題:磁控濺射 + 能量過(guò)濾磁控濺射。 參考:《鄭州大學(xué)》2017年碩士論文
【摘要】:隨著薄膜科學(xué)的發(fā)展和薄膜產(chǎn)業(yè)的進(jìn)步,多種薄膜制備技術(shù)也取得了較快的發(fā)展。磁控濺射鍍膜技術(shù)因具有很多的優(yōu)點(diǎn)而被廣泛應(yīng)用,例如在表面微加工,表面改性,光學(xué)薄膜,半導(dǎo)體薄膜,微電子和光電子技術(shù)等領(lǐng)域。其優(yōu)點(diǎn)為:薄膜致密度高與基片附著性好,均勻性好,沉積速率快,可方便地制取高熔點(diǎn)物質(zhì)的薄膜,成膜面積大等。但它也有一些我們不可忽視的缺點(diǎn),比如制備的薄膜表面粗糙,顆粒較大,均勻性欠佳,結(jié)構(gòu)不夠致密等等。為克服磁控濺射技術(shù)的上述缺點(diǎn),我們對(duì)本實(shí)驗(yàn)室的CS-300磁控濺射鍍膜機(jī)進(jìn)行了改進(jìn),加裝了一個(gè)網(wǎng)狀過(guò)濾電極,在直流磁控濺射(DMS)基礎(chǔ)上研發(fā)了一種改進(jìn)的磁控濺射技術(shù),稱(chēng)之為“能量過(guò)濾磁控濺射”(Energy Filtering Magnetron Sputtering,EFMS)技術(shù),并且取得了良好的技術(shù)效果。本文利用磁控濺射(DMS)和能量過(guò)濾磁控濺射(EFMS)技術(shù)制備TiO2,ITO和ZnO薄膜,研究了能量過(guò)濾磁控濺射(EFMS)技術(shù)過(guò)濾電極網(wǎng)孔大小對(duì)薄膜結(jié)構(gòu)和性能的影響,進(jìn)而比較研究了傳統(tǒng)磁控濺射(DMS)技術(shù)和能量過(guò)濾磁控濺射(EFMS)技術(shù)所制備薄膜的結(jié)構(gòu)、光學(xué)性能和均一性。本文研究工作分為四部分,主要研究?jī)?nèi)容和結(jié)論如下:分別采用直流磁控濺射(DMS)和能量過(guò)濾磁控濺射(EFMS)技術(shù)制備了TiO2薄膜,利用掃描電子顯微鏡(STM),X射線衍射儀(XRD),分光光度計(jì)、橢偏儀對(duì)薄膜的形貌、結(jié)構(gòu)、光學(xué)性能(透射率、折射率和消光系數(shù))進(jìn)行了表征。分析對(duì)比了直流磁控濺射(DMS)技術(shù)和采用不同大小網(wǎng)孔過(guò)濾電極條件下能量過(guò)濾磁控濺(EFMS)技術(shù)所制備鍍膜的結(jié)晶性能、表面形貌以及光學(xué)性能。結(jié)果表明,當(dāng)采用8目金屬網(wǎng)過(guò)濾電極時(shí)TiO2薄膜的結(jié)晶質(zhì)量最好,薄膜表面顆粒細(xì)小,粗糙度低;薄膜折射率隨過(guò)濾電極網(wǎng)孔目數(shù)的增加而升高,消光系數(shù)降低。薄膜光學(xué)帶隙受過(guò)濾電極網(wǎng)孔目數(shù)的影響不大。分別采用直流磁控濺射(DMS)和能量過(guò)濾磁控濺射(EFMS)技術(shù)制備了ITO薄膜,結(jié)果表明當(dāng)采用4目金屬網(wǎng)過(guò)濾電極時(shí)ITO薄膜的結(jié)晶性最好,采用8目和30目金屬網(wǎng)過(guò)濾電極時(shí)薄膜表面顆粒較小;30目過(guò)濾電極時(shí)薄膜透射率最高,8目和30目過(guò)濾電極時(shí)薄膜折射率和消光系數(shù)較高。分別采用直流磁控濺射(DMS)和能量過(guò)濾磁控濺射(EFMS)技術(shù)制備了ZnO薄膜。結(jié)果表明,30目過(guò)濾電極時(shí)薄膜的結(jié)晶質(zhì)量最好;30目和8目過(guò)濾電極時(shí)薄膜樣品顆粒細(xì)小,沒(méi)有出現(xiàn)明顯的團(tuán)簇現(xiàn)象;8目過(guò)濾電極時(shí)薄膜的透射率最高;薄膜光學(xué)帶隙受過(guò)濾電極的影響不大。分別采用直流磁控濺射(DMS)和能量過(guò)濾磁控濺射(EFMS)技術(shù)在襯底架不同位置上制備了TiO2薄膜,分析對(duì)比了兩種技術(shù)在大面積襯底內(nèi)所制備薄膜的結(jié)構(gòu)及光學(xué)均一性。結(jié)果顯示,與DMS技術(shù)相比,EFMS技術(shù)制備的薄膜在大面積沉底范圍內(nèi)的結(jié)構(gòu)及光學(xué)特性均一性均得到了改善。
[Abstract]:With the development of film science and film industry, many kinds of thin film preparation technology have made rapid development. Magnetron sputtering technology has been widely used in many fields such as surface microprocessing, surface modification, optical thin film, semiconductor film, microelectronics and optoelectronic technology. The advantages of high density film and substrate adhesion, good uniformity, fast deposition rate, easy preparation of high melting point materials, large film area and so on. However, it also has some shortcomings, such as rough surface, large particle size, poor uniformity, uncompact structure and so on. In order to overcome the above shortcomings of the magnetron sputtering technology, we have improved the CS-300 magnetron sputtering coating machine in our laboratory, installed a mesh filter electrode, and developed an improved magnetron sputtering technology on the basis of DC magnetron sputtering. It is called "Energy filter Magnetron sputtering" and has achieved good results. The technique of Energy Filtering Magnetron Sputtering / EFMS is called "Energy filter Magnetron sputtering" (EF-Magnetron sputtering). In this paper, TiO2ITO and ZnO thin films were prepared by magnetron sputtering and energy filtered magnetron sputtering. The effect of the pore size of the filter electrode on the structure and properties of the films was studied. Furthermore, the structure, optical properties and homogeneity of the films prepared by conventional magnetron sputtering (DMS) technique and energy filtered magnetron sputtering (EFMS) technique are compared. The research work is divided into four parts. The main contents and conclusions are as follows: TiO2 thin films were prepared by DC magnetron sputtering and energy filtered magnetron sputtering respectively. The TiO2 thin films were prepared by scanning electron microscope (SEM) and X-ray diffractometer (XRD). The morphology, structure and optical properties (transmittance, refractive index and extinction coefficient) of the films were characterized by ellipsometry. The crystallization, surface morphology and optical properties of the films prepared by DC magnetron sputtering (DMS) technique and energy filter magnetron spatter (EFMS) technique under different size mesh filter electrodes were analyzed and compared. The results show that when 8 mesh metal mesh filter electrode is used, the crystalline quality of TiO2 film is the best, the surface of the film is fine and the roughness is low, and the refractive index of the film increases with the increase of the mesh number of the filter electrode, and the extinction coefficient decreases. The optical band gap of the thin film is not affected by the mesh number of the filter electrode. ITO thin films were prepared by DC magnetron sputtering and energy filtered magnetron sputtering respectively. The results show that the crystallization of ITO films is the best when 4 mesh metal mesh filter electrodes are used. The film transmittance is the highest at 8 mesh and 30 mesh metal mesh filter electrode, and the film refractive index and extinction coefficient are higher when the film surface particles are smaller than 30 mesh filter electrode. ZnO thin films were prepared by DC magnetron sputtering and energy filtered magnetron sputtering respectively. The results show that the film crystal quality is the best at 30 mesh filter electrode and 8 mesh filter electrode, and the film transmittance is the highest when there is no obvious cluster phenomenon. The thin film optical band gap is not affected by the filter electrode. TiO2 thin films were prepared on different positions on substrates by DC magnetron sputtering and energy filtered magnetron sputtering respectively. The structure and optical homogeneity of the films deposited on large area substrates were analyzed and compared. The results show that compared with the DMS technique, the structure and optical properties of the films prepared by the DMS technique have been improved in the large area bottom range.
【學(xué)位授予單位】:鄭州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O484
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張清清;王朝勇;程祖華;韓昌報(bào);姚寧;;能量過(guò)濾磁控濺射技術(shù)室溫制備ITO膜的光電特性及其應(yīng)用[J];真空科學(xué)與技術(shù)學(xué)報(bào);2015年01期
2 張文杰;朱圣龍;李瑛;王福會(huì);何紅波;;沉積時(shí)間對(duì)磁控反應(yīng)濺射制備TiO_2薄膜性能的影響[J];功能材料;2008年11期
3 張萬(wàn)忠;劉景民;周智敏;;納米TiO_2的研究與應(yīng)用進(jìn)展[J];石油化工;2007年11期
4 余花娃;杜亞利;王晶;劉靜;;磁控濺射制備參數(shù)對(duì)ZnO薄膜結(jié)構(gòu)和光學(xué)性能的影響[J];紡織高校基礎(chǔ)科學(xué)學(xué)報(bào);2007年02期
5 徐萬(wàn)勁;磁控濺射技術(shù)進(jìn)展及應(yīng)用(上)[J];現(xiàn)代儀器;2005年05期
6 楊文茂,劉艷文,徐祿祥,冷永祥,黃楠;濺射沉積技術(shù)的發(fā)展及其現(xiàn)狀[J];真空科學(xué)與技術(shù)學(xué)報(bào);2005年03期
7 徐均琪,杭凌俠,蔡長(zhǎng)龍;磁控濺射離子束流密度的研究[J];真空科學(xué)與技術(shù)學(xué)報(bào);2004年01期
8 劉翔宇,趙來(lái),許生,范垂禎,查良鎮(zhèn);磁控濺射鍍膜設(shè)備中靶的優(yōu)化設(shè)計(jì)[J];真空;2003年04期
9 趙新民,狄國(guó)慶,朱炎;外加磁場(chǎng)對(duì)磁控濺射靶利用率的影響[J];真空科學(xué)與技術(shù);2003年02期
10 許生,侯曉波,范垂禎,趙來(lái),周海軍,吳克堅(jiān),高文波,顏遠(yuǎn)全,查良鎮(zhèn);硅靶中頻反應(yīng)磁控濺射二氧化硅薄膜的特性研究[J];真空;2001年05期
,本文編號(hào):1784914
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/benkebiyelunwen/1784914.html