電動(dòng)汽車充放電優(yōu)化及利益鏈協(xié)調(diào)研究
本文選題:電動(dòng)汽車 + 充電行為; 參考:《華北電力大學(xué)(北京)》2016年博士論文
【摘要】:電動(dòng)汽車由于其具有節(jié)能減排效益成為了未來(lái)交通端的重要轉(zhuǎn)型方向。電動(dòng)汽車的充電行為主要受用戶主導(dǎo),每一輛電動(dòng)汽車接入電網(wǎng)都會(huì)形成隨機(jī)的用電負(fù)荷,由于我國(guó)電源結(jié)構(gòu)以燃煤為主,隨機(jī)的充電行為會(huì)造成交通端降低的碳排放轉(zhuǎn)移到發(fā)電端,從而使電動(dòng)汽車發(fā)展的節(jié)能減排初衷失去意義。由此,發(fā)展電動(dòng)汽車需著重研究電動(dòng)汽車的充電行為。此外,電動(dòng)汽車充電過程中涉及到多個(gè)利益主體,包括發(fā)電端、電網(wǎng)端、基礎(chǔ)設(shè)施運(yùn)營(yíng)商及電動(dòng)汽車用戶。為了使用戶優(yōu)化充電行為,必須從利益鏈的角度協(xié)調(diào)各方利益,從而形成外界激勵(lì)對(duì)用戶的充電行為進(jìn)行引導(dǎo);诓煌碾妱(dòng)汽車充電模式,本文旨在獲得電動(dòng)汽車充放電優(yōu)化策略及形成保障有序充放電的利益鏈協(xié)調(diào)機(jī)制。我國(guó)正大力推動(dòng)公共交通端的電氣化進(jìn)程,考慮與私家車的相似性及數(shù)據(jù)源的獲取性,本文主要針對(duì)電動(dòng)出租車的充電行為及充放電優(yōu)化策略展開研究。電動(dòng)汽車充電行為研究是有序充電優(yōu)化策略的基礎(chǔ),本文首先對(duì)電動(dòng)汽車充電行為進(jìn)行了細(xì)致剖析。通過實(shí)地調(diào)研,以電動(dòng)出租車運(yùn)行數(shù)據(jù)為基礎(chǔ),通過高斯混合分布模型對(duì)充電起始時(shí)間及充電歷時(shí)進(jìn)行分布擬合,以貝葉斯信息準(zhǔn)則為依據(jù)篩選最優(yōu)的擬合模型,并通過蒙特卡洛方法校驗(yàn)擬合模型的有效性,從而獲得電動(dòng)出租車充電一般規(guī)律模型。進(jìn)一步,考慮電動(dòng)汽車保有量、充電次數(shù)、充電功率、充電能效等因素,構(gòu)建電動(dòng)汽車充電需求模型,確定實(shí)際充電負(fù)荷。為了剖析電動(dòng)汽車充電的實(shí)際效益,本文構(gòu)建了電網(wǎng)運(yùn)行效益分析模型及碳減排效益分析模型。采用多個(gè)地區(qū)的基礎(chǔ)數(shù)據(jù)進(jìn)行測(cè)算,結(jié)果表明,實(shí)際充電負(fù)荷會(huì)給電網(wǎng)運(yùn)行增加壓力,但是相較于燃油車,節(jié)能減排效益顯著。同時(shí),電動(dòng)汽車實(shí)現(xiàn)的綜合效益具有區(qū)域差異性。充電行為優(yōu)化策略是實(shí)現(xiàn)電動(dòng)汽車節(jié)能減排效益的前提。圍繞此,分別就直充及換電兩種模式對(duì)電動(dòng)汽車的充電行為進(jìn)行了優(yōu)化。直充模式下,考慮多個(gè)利益方視角,分別構(gòu)建充電優(yōu)化模型。其中,電網(wǎng)方優(yōu)先考慮平衡負(fù)荷波動(dòng)及外在激勵(lì)綜合效益值最;運(yùn)營(yíng)商在分時(shí)電價(jià)及分時(shí)服務(wù)費(fèi)作用下,優(yōu)先考慮最大化充電服務(wù)收益;用戶在分時(shí)充電費(fèi)作用下,優(yōu)先考慮最小化充電成本,從而獲得多個(gè)充電負(fù)荷優(yōu)化策略。這些充電負(fù)荷優(yōu)化策略較實(shí)際充電負(fù)荷都實(shí)現(xiàn)了效益的提升,其中以從電網(wǎng)方視角進(jìn)行的優(yōu)化效果最為明顯。為了對(duì)比各優(yōu)化策略實(shí)現(xiàn)的節(jié)能減排效果,從發(fā)電方角度以燃煤成本最低為目標(biāo),構(gòu)建了節(jié)能調(diào)度優(yōu)化模型。結(jié)果表明,相較于實(shí)際充電負(fù)荷,三種優(yōu)化充電策略均使得發(fā)電計(jì)劃中增加了清潔能源發(fā)電量,降低了火電發(fā)電量,提高了單位火電煤耗效率及單位系統(tǒng)發(fā)電煤耗效率。換電模式下,以避開負(fù)荷高峰段、避開電動(dòng)出租車運(yùn)營(yíng)密集期及避開電動(dòng)出租車車主休息期為原則,對(duì)換電站的充電負(fù)荷進(jìn)行了優(yōu)化,提出了有序換電模式。通過構(gòu)建電網(wǎng)端效益分析模型驗(yàn)證了有序換電模式可提高電網(wǎng)運(yùn)行效益。考慮風(fēng)電入網(wǎng)、火電機(jī)組運(yùn)行約束、輸電約束、換電站運(yùn)營(yíng)約束、充放電約束,構(gòu)建了發(fā)電端經(jīng)濟(jì)調(diào)度模型,對(duì)不同電動(dòng)汽車規(guī)模下?lián)Q電站執(zhí)行充放電的節(jié)能減排效益進(jìn)行分析。結(jié)果表明有序換電模式、電動(dòng)出租車保有量及換電站充放電行為將共同影響發(fā)電端節(jié)能減排效益。利益鏈異質(zhì)主體間能否實(shí)現(xiàn)共贏與電動(dòng)汽車有序充放電的實(shí)現(xiàn)息息相關(guān),任意一方經(jīng)濟(jì)性缺失都將阻礙電動(dòng)汽車充電市場(chǎng)的健康發(fā)展。其中,換電模式經(jīng)濟(jì)性一直是阻礙其大規(guī)模發(fā)展的瓶頸。雖然相較于直充模式,換電模式更適合電動(dòng)出租車的供能,且其實(shí)現(xiàn)了對(duì)電池的統(tǒng)一管理,更易于對(duì)充放電活動(dòng)有序操控,且通過充放電所能實(shí)現(xiàn)的綜合效益更為明顯。但由于運(yùn)營(yíng)商前期投入大,利益鏈難以實(shí)現(xiàn)平衡。本文基于需求端,挖掘潛在運(yùn)營(yíng)商及運(yùn)營(yíng)模式,從運(yùn)營(yíng)商視角構(gòu)建投資成本分析模型,從用戶視角構(gòu)建充電費(fèi)用分析模型,分別獲得運(yùn)營(yíng)商開展換電服務(wù)的邊際收益條件及用戶接受換電服務(wù)的邊際成本條件。通過兩者的平衡,研判各運(yùn)營(yíng)模式的經(jīng)濟(jì)性。此外,對(duì)多個(gè)影響換電服務(wù)的關(guān)鍵因素進(jìn)行了敏感性分析。利益鏈實(shí)現(xiàn)內(nèi)在協(xié)調(diào)是電動(dòng)汽車有序充放電的機(jī)制保障。本文圍繞促使電動(dòng)出租車有序充放電、促進(jìn)利益鏈實(shí)現(xiàn)協(xié)調(diào)的目標(biāo)展開研究。直充模式下,基于序貫博弈理念,構(gòu)建了各參與方利益優(yōu)化模型,通過電價(jià)聯(lián)動(dòng)實(shí)現(xiàn)了利益鏈協(xié)調(diào),并求解出協(xié)調(diào)時(shí)的相應(yīng)電價(jià)值。當(dāng)達(dá)到協(xié)調(diào)狀態(tài)時(shí),充電負(fù)荷實(shí)現(xiàn)了削峰填谷,且在用電負(fù)荷谷段及平段避免了新負(fù)荷高峰的產(chǎn)生。此外,發(fā)電方及電網(wǎng)方的收益實(shí)現(xiàn)上升,用戶方的充電成本實(shí)現(xiàn)下降,風(fēng)電發(fā)電量得到提升,高效率火電機(jī)組的競(jìng)爭(zhēng)力更為明顯。換電模式下,電網(wǎng)與運(yùn)營(yíng)商之間構(gòu)建了契約機(jī)制,運(yùn)營(yíng)商與用戶之間遵循“委托-代理”關(guān)系,利用分時(shí)換電服務(wù)費(fèi)實(shí)現(xiàn)利益鏈協(xié)調(diào),通過設(shè)定多個(gè)充放電價(jià)及換電峰谷服務(wù)價(jià)以探尋使利益鏈得到協(xié)調(diào)的平衡點(diǎn)。結(jié)果顯示,采取相同的充放電價(jià)及較小變幅的峰谷換電服務(wù)價(jià)可保障各方利益均有所上升,實(shí)現(xiàn)利益鏈的可持續(xù)運(yùn)行。
[Abstract]:Because of its energy saving and emission reduction benefit, electric vehicle has become an important transformation direction of the future traffic terminal. The charging behavior of electric vehicles is mainly dominated by users. Each electric vehicle will be connected to the power grid to form a random electric load. Because the power supply structure in China is dominated by coal burning, the random charging behavior will cause the reduction of carbon in the traffic terminal. Therefore, the development of electric vehicles should focus on the study of the charging behavior of electric vehicles. In addition, there are many stakeholders involved in the electric vehicle charging process, including the power generation, the grid end, the infrastructure operators and the electric vehicle users. In order to optimize the charging behavior, it is necessary to coordinate the interests of all parties from the perspective of interest chain, so as to form an external incentive to guide the user's charging behavior. Based on the different electric vehicle charging mode, this paper aims to obtain the optimization strategy of electric vehicle charging and discharging and the formation of the interest chain coordination mechanism to guarantee the orderly charging and discharging. The electrification process of the common traffic terminal, considering the similarity of the private car and the acquisition of the data source, is mainly focused on the charging behavior and the charging and discharging optimization strategy of the electric taxis. The study of the electric vehicle charging behavior is the basis of the orderly charging optimization strategy. This paper first analyzes the charging behavior of the electric vehicle in detail. On the basis of field investigation, based on the operation data of electric taxi, the distribution model of Gauss mixed distribution model is used to fit the starting time of charging and the duration of charging. The optimal fitting model is screened based on Bayesian information criterion, and the validity of the fitting model is checked by Monte Carlo method so as to obtain the charging of electric taxi. In order to analyze the actual benefit of electric vehicle charging, this paper constructs an analysis model of power network operation benefit and an analysis model of carbon emission reduction efficiency. The results show that the actual charging load will increase the pressure of the power grid operation, but compared with the fuel vehicle, the efficiency of energy saving and emission reduction is remarkable. At the same time, the comprehensive benefit of the electric vehicle has regional difference. The optimization strategy of charging behavior is the precondition of realizing the efficiency of energy saving and emission reduction of electric vehicles. The charging behavior of electric vehicles is optimized by two modes of direct charging and switching. Under the direct charge mode, the charging optimization model is constructed in the view of multiple stakeholders. Among them, the power grid priority considers the balance load fluctuation and the minimum comprehensive benefit value of the external incentive. The operator takes the priority examination under the time sharing price and the time sharing service charge. Considering the benefit of maximizing the charging service, the user is given priority to minimize the charge cost under the time-sharing charge fee, thus obtaining multiple charging load optimization strategies. These charging load optimization strategies have achieved a better benefit than the actual charging load, in which the optimization effect from the power grid angle is the most obvious. The energy saving and emission reduction effect achieved by the optimization strategy is designed from the point of view of the power generation, and the energy-saving scheduling optimization model is constructed. The results show that, compared with the actual charging load, the three optimal charging strategies make the power generation plan increase the power generation of clean energy, reduce the power generation capacity and improve the coal consumption efficiency of unit thermal power. In order to avoid the peak period of the load, avoid the operation intensive period of the electric taxi and avoid the rest period of the electric taxi driver, the charging load of the power station is optimized, and the ordered switching mode is put forward, and the ordered change mode is verified through the construction of the benefit analysis model of the power grid end. It can improve the efficiency of the power grid operation. Considering the wind power network, the operation constraints of the thermal power unit, the transmission constraints, the operation constraints of the power station, the charge and discharge constraints, the economic dispatch model of the power generation terminal is constructed, and the energy saving and emission reduction benefits of the electric power stations under the scale of different electric vehicles are analyzed. The amount of ownership and the charge and discharge behavior of changing the power station will affect the efficiency of energy saving and emission reduction. The realization of mutual benefit among the heterogeneous stakeholders in the interest chain is closely related to the realization of the orderly charging and discharging of electric vehicles, and the economic loss of any party will hinder the healthy development of the electric vehicle charging market. Compared with the direct charge mode, the switching mode is more suitable for the electric taxi power supply, and it realizes the unified management of the battery, it is easier to manipulate the charge and discharge activities, and the comprehensive benefits can be realized more clearly through charging and discharging. However, the benefit chain is difficult to achieve balance due to the large investment of the operators in the early stage. This paper, based on the demand side, excavated the potential operators and operating modes, constructed the investment cost analysis model from the operator's perspective, constructed the charging cost analysis model from the user's perspective, respectively obtained the marginal revenue conditions for the operators to carry out the power exchange service and the boundary cost conditions for the users to accept the electricity exchange service. In addition, the sensitivity analysis of the key factors affecting the power switching service is analyzed. The internal coordination of the interest chain is the mechanism guarantee for the orderly charging and discharging of electric vehicles. This paper focuses on the aim of promoting the orderly charging and discharging of electric taxis and promoting the coordination of interest chain. It constructs the optimization model of the interests of each participant, realizes the coordination of interest chain through the linkage of electricity price, and solves the corresponding electrical value of the coordination. When the coordination state is reached, the charging load realizes the peak filling and valley filling and avoids the new load peak in the electricity load valley section and the flat section. In addition, the income of the power generation and the power grid is real. At present, the charging cost of the user is reduced, the power generation of the wind power is improved, the competitiveness of the high efficiency thermal power unit is more obvious. Under the mode of switching, the contract mechanism is built between the power grid and the operators, the relationship between the operators and the users is followed by the "principal agent" relationship, and the interest chain coordination is realized by the time sharing service fee, through the establishment of the coordination of the interest chain. The results show that the same charge and discharge price and small amplitude change of peak valley power exchange service price can ensure that the interests of all parties are increased, and the sustainable operation of the interest chain is achieved.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:F426.61
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙清,徐衍亮,安忠良,許家群,齊瑞貴;電動(dòng)汽車的發(fā)展與環(huán)境保護(hù)[J];沈陽(yáng)工業(yè)大學(xué)學(xué)報(bào);2000年05期
2 章超,易家玉;全球電動(dòng)汽車發(fā)展迅猛[J];大眾用電;2000年09期
3 章超;開發(fā)電動(dòng)汽車市場(chǎng)前景廣闊[J];大眾用電;2000年09期
4 ;戴-克公司第四代電動(dòng)汽車[J];重型汽車;2000年04期
5 ;電動(dòng)汽車是中國(guó)汽車業(yè)趕超發(fā)達(dá)國(guó)家的重要切入點(diǎn)[J];電器工業(yè);2001年12期
6 徐新明;環(huán)保電動(dòng)汽車時(shí)代誰(shuí)執(zhí)牛耳[J];發(fā)明與革新;2001年04期
7 焦慶豐;電動(dòng)汽車前景廣闊[J];大眾用電;2001年03期
8 劉茂理;云南需要電動(dòng)汽車[J];云南交通科技;2001年01期
9 叢曉杰;電動(dòng)汽車:推動(dòng)世界的綠色動(dòng)力[J];中國(guó)石油;2001年09期
10 豪彥;21世紀(jì)世界汽車工業(yè)發(fā)展趨勢(shì)(三)——電動(dòng)汽車[J];汽車與配件;2001年Z1期
相關(guān)會(huì)議論文 前10條
1 宋翔;;電動(dòng)汽車是未來(lái)的趨勢(shì)[A];重慶汽車工程學(xué)會(huì)2008年學(xué)術(shù)會(huì)議論文集[C];2008年
2 賈愛芹;;淺談電動(dòng)汽車推廣的實(shí)現(xiàn)途徑[A];第六屆河南省汽車工程科技學(xué)術(shù)研討會(huì)論文集[C];2009年
3 張夢(mèng)潔;田令;;電動(dòng)汽車的發(fā)展現(xiàn)狀及趨勢(shì)研究[A];第三屆河南省汽車工程科技學(xué)術(shù)研討會(huì)論文集[C];2006年
4 倫景光;;電動(dòng)汽車在中國(guó)的發(fā)展前景[A];科技進(jìn)步與學(xué)科發(fā)展——“科學(xué)技術(shù)面向新世紀(jì)”學(xué)術(shù)年會(huì)論文集[C];1998年
5 張夢(mèng)潔;田令;;電動(dòng)汽車的發(fā)展現(xiàn)狀及趨勢(shì)研究[A];第三屆河南省汽車工程科技學(xué)術(shù)研討會(huì)暨2006年省汽學(xué)會(huì)理事會(huì)議資料[C];2006年
6 張炳力;趙韓;;貫徹“汽車新政”加快安徽電動(dòng)汽車工業(yè)的發(fā)展[A];2004“安徽制造業(yè)發(fā)展”博士科技論壇論文集[C];2004年
7 張杰;;電動(dòng)汽車發(fā)展需要更多“綠燈”[A];西南汽車信息:2013年第7期(總第328期)[C];2013年
8 姚勇;劉林生;顧健輝;陳林;李科江;趙曉;;電動(dòng)汽車發(fā)展對(duì)配電網(wǎng)的影響及對(duì)策[A];2013年中國(guó)電機(jī)工程學(xué)會(huì)年會(huì)論文集[C];2013年
9 蔣惠琴;歐萬(wàn)彬;鮑健強(qiáng);葉瑞克;;電動(dòng)汽車:引領(lǐng)城市低碳交通的未來(lái)[A];生態(tài)城市建設(shè)與生態(tài)危機(jī)管理——中國(guó)未來(lái)研究會(huì)2010年學(xué)術(shù)年會(huì)論文集[C];2010年
10 李曉勤;魯植雄;逄小鳳;;淺述電動(dòng)汽車的研究現(xiàn)狀與發(fā)展趨勢(shì)[A];江蘇省汽車工程學(xué)會(huì)第九屆學(xué)術(shù)年會(huì)論文集[C];2010年
相關(guān)重要報(bào)紙文章 前10條
1 本報(bào)記者陳興安;電動(dòng)汽車引領(lǐng)奧運(yùn)時(shí)尚[N];中國(guó)經(jīng)營(yíng)報(bào);2002年
2 賈俊國(guó);公司推動(dòng)電動(dòng)汽車發(fā)展試點(diǎn)實(shí)施方案座談會(huì)在上海召開[N];國(guó)家電網(wǎng)報(bào);2007年
3 孫逢春;助推電動(dòng)汽車發(fā)展意義重大[N];國(guó)家電網(wǎng)報(bào);2007年
4 本報(bào)記者 葛勝征;奧運(yùn)會(huì) 世博會(huì)重點(diǎn)采購(gòu)電動(dòng)汽車[N];政府采購(gòu)信息報(bào);2007年
5 本報(bào)記者 劉輝邋李層;發(fā)展電動(dòng)汽車 國(guó)網(wǎng)搶得先機(jī)[N];中國(guó)電力報(bào);2007年
6 記者 張靜;電動(dòng)汽車產(chǎn)業(yè)發(fā)展論壇召開[N];經(jīng)濟(jì)日?qǐng)?bào);2009年
7 孫萌萌;工信部召集各方落實(shí)電動(dòng)汽車政策[N];人民政協(xié)報(bào);2009年
8 本報(bào)實(shí)習(xí)記者 楊冬;電動(dòng)汽車能否順利駛?cè)搿爱a(chǎn)業(yè)化時(shí)代”[N];中國(guó)知識(shí)產(chǎn)權(quán)報(bào);2009年
9 柯蕓;應(yīng)加快建立電動(dòng)汽車研發(fā)支撐體系[N];中國(guó)高新技術(shù)產(chǎn)業(yè)導(dǎo)報(bào);2008年
10 本報(bào)記者 張鳳宇;電動(dòng)汽車中國(guó)汽車業(yè)的新機(jī)遇[N];中國(guó)信息報(bào);2001年
相關(guān)博士學(xué)位論文 前10條
1 胡超;電動(dòng)汽車無(wú)線供電電磁耦合機(jī)構(gòu)能效特性及優(yōu)化方法研究[D];重慶大學(xué);2015年
2 張虹;考慮電動(dòng)汽車聚合站的主動(dòng)配電網(wǎng)動(dòng)態(tài)優(yōu)化調(diào)度[D];華北電力大學(xué);2015年
3 宋世欣;分布式驅(qū)動(dòng)電動(dòng)汽車控制策略及硬件在環(huán)實(shí)驗(yàn)研究[D];吉林大學(xué);2015年
4 張迪;電動(dòng)汽車充\換電設(shè)施選址模型研究[D];華中科技大學(xué);2015年
5 徐浩;面向規(guī)模化電動(dòng)汽車入網(wǎng)的充電站布局優(yōu)化及有序充電策略研究[D];華中科技大學(xué);2015年
6 張斌;電動(dòng)汽車永磁同步驅(qū)動(dòng)電機(jī)電磁熱設(shè)計(jì)研究[D];華中科技大學(xué);2015年
7 方支劍;計(jì)及電池與電網(wǎng)影響的電動(dòng)汽車充換電控制[D];華中科技大學(xué);2015年
8 邵艾博(Khalid,Muhammad Shoaib);可再生能源和電動(dòng)汽車一體化管理對(duì)多模微電網(wǎng)穩(wěn)定性的影響分析[D];華中科技大學(xué);2015年
9 劉瑜俊;電動(dòng)汽車儲(chǔ)能特性及其配置方法研究[D];東南大學(xué);2015年
10 強(qiáng)浩;計(jì)及無(wú)線充電的電動(dòng)汽車對(duì)電網(wǎng)的影響研究[D];東南大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 寇凌峰;電動(dòng)汽車大規(guī)模接入對(duì)電網(wǎng)的影響分析[D];華北電力大學(xué)(北京);2011年
2 黃潤(rùn);電動(dòng)汽車入網(wǎng)對(duì)電網(wǎng)負(fù)荷影響的研究[D];上海交通大學(xué);2012年
3 楊俊秋;電動(dòng)汽車充放電容量預(yù)測(cè)及控制策略的優(yōu)化研究[D];北京交通大學(xué);2012年
4 薛紅紅;電動(dòng)汽車與電網(wǎng)互動(dòng)技術(shù)之協(xié)調(diào)充電策略探究[D];華中師范大學(xué);2012年
5 許恬;我國(guó)當(dāng)前電動(dòng)汽車潛在消費(fèi)者的識(shí)別與消費(fèi)行為研究[D];武漢理工大學(xué);2012年
6 唐升衛(wèi);電動(dòng)汽車有序充電研究[D];湖南大學(xué);2012年
7 王傳能;電動(dòng)汽車換電站優(yōu)化規(guī)劃研究[D];華北電力大學(xué);2012年
8 張晨曦;電動(dòng)汽車入網(wǎng)技術(shù)及社會(huì)綜合效益研究[D];浙江大學(xué);2013年
9 何清晨;適用于城市通勤的個(gè)人電動(dòng)汽車設(shè)計(jì)與研究[D];清華大學(xué);2012年
10 張敏;計(jì)及規(guī);妱(dòng)汽車充放電負(fù)荷的配電網(wǎng)效能分析[D];華北電力大學(xué);2013年
,本文編號(hào):1777677
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/jjglbs/1777677.html