放牧對草原生態(tài)系統(tǒng)碳、氮循環(huán)的影響:整合分析
[Abstract]:Grazing is one of the main ways of the grassland ecosystem. Unreasonable grazing activity not only threatens the biological diversity and stability of the grassland ecosystem, but also can obviously change the structure and function of the grassland ecosystem and cause the loss of carbon and nitrogen. In recent years, although a large number of studies on the effects of grazing on the carbon and nitrogen cycle of the grassland ecosystem have been carried out worldwide, the general rules of grazing on the cycle of carbon and nitrogen, especially the underground process, still have a wide range of disputes. In this paper, through the setting of the standard,105 papers on the effects of grazing on the carbon and nitrogen cycle of the grassland ecosystem were selected from over 2,500 articles of the world, and the analysis database was established. the analysis database mainly comprises a plant ground carbon library, a plant underground carbon library, a soil carbon library, a litter material carbon pool, a microbial biomass carbon pool, a plant ground part nitrogen bank, a plant underground part nitrogen bank, a soil nitrogen bank, a litterfall nitrogen bank, a microbial biomass nitrogen bank and a soil carbon-nitrogen ratio, The parameters such as the carbon-nitrogen ratio, the microbial carbon-nitrogen ratio, the carbon-nitrogen ratio of the litters, the soil respiration flux, the soil net-nitrogen mineralization rate, the soil net-nitrogen nitrification rate, the soil bulk density, the soil pH value, the soil temperature and the soil humidity, and the like are the root system carbon-nitrogen ratio, the microbial carbon-nitrogen ratio, the litter-litter carbon-nitrogen ratio, the soil The general rule of the process of carbon and nitrogen cycling in the grassland ecosystem is analyzed in depth based on the database and the integral analysis method. The results showed that the grazing activity significantly reduced the carbon pool of soil, the carbon pool of the underground part of the plant, the amount of soil microbial biomass and the carbon pool of litters, with the reduction of 10.28, 13.72, 21.62 and 8.93%, respectively. The reduction was 13.38, 4.40, 24.40, and 10.39%, respectively; the reduction of the amount of microbial biomass and nitrogen was the largest compared to other parameters. In contrast, grazing significantly increased the carbon-to-nitrogen ratio of the soil and the root system, but decreased the carbon-to-nitrogen ratio of the microorganism and the litter. Grazing activity significantly increased the soil respiration flux of the grassland ecosystem, the net nitrogen mineralization and the nitrification rate of the soil, and the growth rate was 4.25, 30.63 and 12.88%, respectively. In addition, grazing activities increased soil bulk density, pH and temperature, but reduced soil moisture. Grazing density significantly changes the size or even the direction of the carbon-nitrogen cycle. The increase of the soil carbon pool and the soil nitrogen bank was 0.78% and 3.24%, respectively. However, the soil carbon pool and the soil nitrogen bank were significantly reduced with moderate and severe grazing, and the reduction of the soil carbon pool was 3.45% and 9.92%, respectively, and the reduction of the soil nitrogen bank was 8.41% and 13.04%, respectively. Similarly, mild grazing increased the carbon and nitrogen ratio of the underground part of the plant to 2.99% and 10.14%, respectively, and the medium and the severe decreased the underground carbon pool of the plant by 3.17% and 24.1%, the carbon-nitrogen ratio of the litter was 22.61% and 30.18%, respectively. In comparison with moderate and severe grazing, the reduction of microbial nitrogen and litter nitrogen under mild grazing is the largest. For flux, mild grazing significantly increased the respiration of the soil by 11.53%, but moderate and severe grazing significantly reduced the respiratory flux by 12.7% and 32.6%, respectively. The weighted response ratio of the soil net nitrogen mineralization rate was from 48.87% to 10.85% from mild to severe grazing. However, the effect of mild grazing on the Nitrification rate of the soil is not obvious, while the moderate and severe grazing significantly reduces the net nitrogen nitrification rate of the soil by 13.43% and 103.06%. The results of the study also show that the environmental factors such as biological and non-biological factors have a significant effect on the response of the carbon and nitrogen cycle of the grassland ecosystem to the grazing activities. Grazing disturbance in the semi-humid area/ wet area is significantly higher than that of the arid/ semi-arid area for the soil carbon pool, the plant underground carbon pool, the soil nitrogen bank and the plant underground nitrogen bank. Similarly, the weighted response ratio of the soil respiration in the semi-humid area/ wet zone was 0.099-0.023 (P0.01), slightly above the arid/ semi-arid area. In the arid/ semi-arid area, the response amplitude of the carbon pool and the litter carbon pool shows a more significant reduction in the half-humid area/ wet area. The different grazing types significantly changed the response and even the direction of most of the observed variables to the grazing activity. Grazing time and annual average temperature were significantly related to the response ratio of soil carbon bank and the response ratio of soil nitrogen bank. There was a significant correlation between the annual average rainfall and the response ratio of the soil carbon reservoir, but the correlation between the response ratio of the soil and the soil was not obvious. In addition, the response ratio of the soil carbon reservoir is positively related to the response ratio of the soil nitrogen bank. In general, grazing activities affect the carbon and nitrogen cycle of the grassland ecosystem on the global scale, and the distribution pattern of carbon and nitrogen in the ground and the ground is changed. Grazing density significantly changes the response and even response of different carbon and nitrogen banks to grazing activities. The effects of grazing density and climate factors on the process of carbon and nitrogen circulation should be considered in the future land ecosystem model in the prediction and assessment of the global carbon and nitrogen balance of the grassland ecosystem.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:S812
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 夏X堡;;關(guān)于草原生態(tài)系統(tǒng)休養(yǎng)生息的淺見[J];環(huán)境教育;2008年02期
2 蓋志毅;;全球視野下的中國草原生態(tài)系統(tǒng)可持續(xù)發(fā)展[J];草原與草坪;2009年04期
3 ;錫林郭勒草原生態(tài)系統(tǒng)舉行國際學(xué)術(shù)會議[J];草業(yè)科學(xué);2009年09期
4 丁國梁;;草原生態(tài)系統(tǒng)的合理保護(hù)建設(shè)與利用[J];中國牧業(yè)通訊;2010年24期
5 邵泗濱;;草原生態(tài)系統(tǒng)研究[J];四川草原;1980年02期
6 黃德華;《草原生態(tài)系統(tǒng)》簡介[J];植物生態(tài)學(xué)與地植物學(xué)叢刊;1985年01期
7 任繼周;;草原生態(tài)系統(tǒng)生產(chǎn)效益的放大[J];中國草原與牧草;1986年03期
8 吳阿迪;杜鐵瑛;;青海草原生態(tài)系統(tǒng)幾個問題淺析[J];中國草原與牧草;1986年06期
9 陶黎;鼠類在草原生態(tài)系統(tǒng)中的作用[J];內(nèi)蒙古草業(yè);1995年Z1期
10 劉奎;草原生態(tài)系統(tǒng)中的蚯蚓[J];國外畜牧學(xué)(草原與牧草);1999年02期
相關(guān)會議論文 前8條
1 唐艷鴻;;試探討人類活動和全球變化對中國草原生態(tài)系統(tǒng)的物質(zhì)循環(huán)和生物多樣性的影響——兼簡單介紹一個日中草原生態(tài)系統(tǒng)研究合作項目[A];Ecological Services of Grassland in China--Proceedings of CCAST (World Laboratory) Workshop[C];2000年
2 孫國棟;穆穆;;理論草原生態(tài)系統(tǒng)平衡態(tài)對有限振幅參數(shù)擾動的穩(wěn)定性研究[A];第七次全國動力氣象學(xué)術(shù)會議論文摘要[C];2009年
3 孫杰;;溫性荒漠草原生態(tài)系統(tǒng)可持續(xù)發(fā)展能量模式探討[A];2006中國草業(yè)發(fā)展論壇論文集[C];2006年
4 孫杰;;溫性荒漠草原生態(tài)系統(tǒng)可持續(xù)發(fā)展能量模式探討[A];中國草學(xué)會青年工作委員會學(xué)術(shù)研討會論文集[C];2007年
5 趙娜;邵新慶;王X;;草原生態(tài)系統(tǒng)的碳匯潛力[A];第八屆博士生學(xué)術(shù)年會論文摘要集[C];2010年
6 康樂;陳永林;;在放牧條件下草原生態(tài)系統(tǒng)中蝗蟲群落演替規(guī)律的研究[A];北京昆蟲學(xué)會成立四十周年學(xué)術(shù)討論會論文摘要匯編[C];1990年
7 康曉明;郝彥賓;李長生;崔驍勇;王金枝;王艷芬;;基于DNDC模型模擬圍封和放牧對內(nèi)蒙古羊草生態(tài)系統(tǒng)碳收支的影響[A];第八屆博士生學(xué)術(shù)年會論文摘要集[C];2010年
8 李金霞;劉曉光;辛?xí)云?;呼倫貝爾草甸草原生態(tài)系統(tǒng)大型土壤動物生態(tài)地理特征[A];自然地理學(xué)與生態(tài)安全學(xué)術(shù)論文摘要集[C];2012年
相關(guān)重要報紙文章 前10條
1 王菡娟;重建退化的草原生態(tài)系統(tǒng)應(yīng)加強(qiáng)科學(xué)論證[N];人民政協(xié)報;2006年
2 水利部農(nóng)村水利司副司長 姜開鵬;關(guān)于建設(shè)草原生態(tài)系統(tǒng)水利保障體系的思考[N];中國水利報;2002年
3 全國畜牧總站 馮葆昌;強(qiáng)牧惠牧富牧政策如春雨滋潤草原生態(tài)系統(tǒng)[N];中國畜牧獸醫(yī)報;2014年
4 記者 張守敏;中蒙美三國合作研究高原草原生態(tài)系統(tǒng)項目在呼啟動[N];呼和浩特日報(漢);2009年
5 ;應(yīng)讓草原生態(tài)系統(tǒng)休養(yǎng)生息[N];中國畜牧獸醫(yī)報;2008年
6 國家環(huán)?偩謬H司原司長 夏X堡;讓草原生態(tài)系統(tǒng)休養(yǎng)生息[N];中國環(huán)境報;2007年
7 孟昭麗 武勇;我國退耕還林達(dá)1.3億畝退牧還草1.9億畝[N];中國畜牧獸醫(yī)報;2006年
8 慕欣;草原鼠害的防治(一)[N];中國畜牧獸醫(yī)報;2006年
9 中國環(huán)境科學(xué)研究院 舒儉民 教授;草原干旱問題與對策[N];中國畜牧水產(chǎn)報;2001年
10 主講人 夏霖 整理 本報記者 馬之恒;鼠兔消滅后更糟[N];北京科技報;2011年
相關(guān)博士學(xué)位論文 前1條
1 Jyoti Bhandari;放牧和降水量對內(nèi)蒙古草原生物多樣性和生產(chǎn)力的影響[D];中國農(nóng)業(yè)大學(xué);2015年
相關(guān)碩士學(xué)位論文 前9條
1 周貴堯;放牧對草原生態(tài)系統(tǒng)碳、氮循環(huán)的影響:整合分析[D];江蘇大學(xué);2016年
2 謝東東;條件非線性最優(yōu)擾動方法在草原生態(tài)系統(tǒng)模式模擬不確定性中的應(yīng)用研究[D];蘭州大學(xué);2012年
3 李娜;增溫和施氮肥對荒漠草原生態(tài)系統(tǒng)土壤溫室氣體通量的影響[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2010年
4 陳志芳;模擬增溫和氮素添加對荒漠草原生態(tài)系統(tǒng)氣體交換的影響[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2012年
5 張謙;中國北方典型草原水分利用效率對晝夜不對稱增溫的特異性響應(yīng)[D];河南大學(xué);2013年
6 李鵬;藏北高寒草原生態(tài)系統(tǒng)氮貯量空間分異規(guī)律[D];西藏大學(xué);2009年
7 范亞軍;亞氣生藍(lán)藻在草原生態(tài)系統(tǒng)中的作用[D];東北師范大學(xué);2004年
8 趙新宇;云霧山國家級自然保護(hù)區(qū)典型草原生態(tài)系統(tǒng)價值研究[D];中國科學(xué)院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心);2014年
9 莫志鴻;北方草原生態(tài)系統(tǒng)NPP、R_h和SOC對氣候變化的響應(yīng)[D];中國農(nóng)業(yè)科學(xué)院;2012年
,本文編號:2511175
本文鏈接:http://www.wukwdryxk.cn/yixuelunwen/dongwuyixue/2511175.html